Unidad didáctica 3
Control del clima por medios constructivos
Introducción:

Para lograr un clima confortable en el interior de los edificios es necesario lograr un equilibrio entre las pérdidas de energía y los aportes energéticos. Para comprender mejor los modos en que un edificio pierde su energía, conviene recordar los modos de transmisión de calor que vimos en el tema 2. Si hay alumnos de bachillerato que no lo han dado pueden ver las láminas números 1 y 3 del tema 2, eso les proporcionará suficiente base para entender esta unidad didáctica.
Este tema puede plantearse exponiendo de entrada los métodos que existen para que los edificios puedan perder o no calor según la época del año, dando a entender que estos hallazgos son descubrimientos actuales. Con ello estaríamos engañando a nuestros alumnos.
La historia de los distintos pueblos nos da ejemplos de cómo nuestros antepasados han sabido combinar el diseño de sus viviendas con los materiales de construcción de que disponían para captar la radiación solar en invierno, ventilar y refrescar los edificios en verano y crear microclimas húmedos en los lugares áridos.
Es muy conveniente observar las ingeniosas viviendas del pasado y aprender de ellas. A partir de ahí podremos armonizar nuestra tecnología con la sabiduría antigua.
Ya hemos citado la maravilla tecnológica que es un iglú, una vivienda que se derrite al llegar el verano. No puede existir material de construcción más ecológico. En el verano sus moradores habitan en tiendas transportables de piel de foca y armazón cónico de madera, adecuadas para su etapa de vida nómada. Para evitar pérdidas de calor a través de la puerta superponen sobre ella varias pieles.
En Mongolia y Kirghizistán los pastores nómadas viven en ingeniosas viviendas transportables, los yurt que recubren con más o menos capas de fieltro según la temperatura exterior para lograr mejor aislamiento.
En Noruega se utilizan desde antaño los tejados de hierba. El mantillo de turba vegetal y hierba poseen un gran poder aislante. Actualmente se ha construido con tejado de hierba un precioso auditorio en honor a Edvard Grieg, al lado de la que fue su casa.
En Japón todavía se usa el “sutomi” persiana opaca de madera aislante que se cierra por la noche para no perder calor.
Los indios anasazi vivían en los acantilados de Mesa Verde (Colorado) orientados al sur para captar toda la radiación solar y estar al abrigo de los fríos vientos. De este modo aprovechaban la masa térmica de la roca.
En Capadocia se vivía en cuevas laberínticas de hasta 6 pisos de profundidad que disponían de ingeniosas chimeneas de ventilación.
En Perú ya existían chimeneas de ventilación en el año 700 de nuestra era. Actualmente en los países árabes es corriente su empleo: Afganistán, Irak, Irán, Egipto, etc.
Los habitantes de las selvas tropicales necesitan edificios con buena ventilación, sombra y poca capacidad de retener calor. Sus paredes dejan pasar el aire. En Nueva Guinea las viviendas se construyen muy elevadas sobre el suelo y abiertas para dejar correr el aire. En Indonesia las paredes son de paja muy permeables a las brisas.
En el Amazonas los yanomamo de la cuenca del Orinoco viven en grandes chozas comunitarias. No hay tabiques para permitir circular a las brisas y disponen de un gran patio interior.
Vale lo dicho como ejemplo de los hallazgos de la arquitectura popular. No me extenderé más en los logros de esta arquitectura anónima puesto que continuaremos viendo ejemplos de ello en temas sucesivos. (Ver lámina 1).
Ya en el los comienzos del siglo XX, los dos grandes precursores del bioclimatismo que hemos mencionado en el tema l, Le Corbusier y Frank Lloyd Wright, basaron buena parte de sus aportaciones de control climático en los apuntes que tomaron en sus viajes por los pueblos de Oriente, donde las viejas tradiciones arquitectónicas seguían vigentes.
Le Corbusier distancia el edificio del suelo por medio de “pilotis”, al modo de palafitos, para los climas cálidos y húmedos. En climas templados cubre en parte la planta baja para evitar excesivas pérdidas de calor, como hizo en la Casa Savoya en 1.929 ( lámina 2 ). Coloca solariums en las azoteas, por ejemplo en la Casa Savoie en Poissy y l´Unité d´Habitation en Marsella (1.958). Sin embargo su manejo de la ventilación y las masas térmicas no estaban logrados y cometió fallos. Uno de los más notables fue su proyecto en Chandigarh cuya climatización natural no dio los resultados esperados. Frank Lloyd Wright utilizó la masa térmica del terreno en sus proyectos de casas alpinas. Uno de sus proyectos más conocidos desde el punto de vista bioclimático es la casa H. Jacobs-2 construida en Middleton (Wisconsin) en 1.943. Es una vivienda situada en un paraje frío en donde el viento sopla con gran fuerza. En la parte cara al viento hizo una cobertura de tierra ocultando la planta baja y haciendo que la parte vista ofrezca al viento un muro curvo para ofrecerle menos resistencia y disminuir la superficie de contacto. La fachada opuesta es un semicírculo abierto al sur, un gran ventanal que abarca las dos plantas y capta toda la radiación solar. (Ver lámina 3)Otros arquitectos también han apuntado en algunos de sus proyectos elementos de control del clima, por ejemplo, Adolf Loos en la Villa Karma construida en Clarens Bei, Montreux (Suiza) en 1.904, diseñó una fachada posterior cara al jardín en la que colocó rejas para que las plantas trepasen por ella. Otro arquitecto, L. Kahn diseñó para la embajada en Angola en 1.959 unos elementos que dan sombra a la fachada y ventiló y dio sombra a la cubierta con unos originales quitasoles.
Vistos los antecedentes históricos de la arquitectura bioclimática, pasaremos a exponer el resto del tema.

Contenido:
Aunque la brevedad de este trabajo que debe ser elaborado en su totalidad en 4 meses no permite profundizar en la distribución de la vivienda bioclimática, un tema que sería fundamental tratar, he querido al menos incluir un esquema que representa la distribución ideal de los espacios en los climas templados atendiendo al recorrido del sol en el firmamento y a las actividades que se desarrollan en las distintas estancias. (Ver lámina 4).
En bioclimatismo se tiende a mantener un clima confortable en el interior de un edificio sin recurrir al empleo de energías no renovables. En invierno querremos mantener la vivienda más cálida que el entorno y en verano más fresca. Esto se consigue manteniendo un buen equilibrio entre las ganancias y pérdidas de calor. Debemos conocer cómo captar calor y cómo podemos perderlo.
Las pérdidas de calor de un edificio se producen:
- A través de los cerramientos: las pérdidas de calor se incrementan notablemente con la existencia de vientos fríos que incrementan las transmisiones de calor desde los cerramientos al medio ambiente.
- Por un diseño que ofrezca una gran superficie de contacto con el exterior favoreciendo de este modo los intercambios de calor.
- Por ventilación al salir al exterior aire caliente procedente del interior del edificio y entrar aire frío.
Las ganancias de calor en un edificio se producen por:
- Captación solar pasiva de la radiación solar a través de los vidrios de las ventanas y de elementos constructivos creados para tal fin, como invernaderos, muros Trombe y elementos de diseño que veremos a lo largo de este tema. Generalmente en climatización se desprecia la captación de radiación solar por los cerramientos opacos
- Captación activa de energía solar utilizando mecanismos artificiales como colectores solares, etc. que veremos en el tema 4.
- Captación de otros tipos de energías renovables como energía eólica, geotérmica, etc. que puedan utilizarse para calentar el edificio.
- Aportes de calor debidos a la quema de combustibles o al empleo de energías no renovables.
- Aportes de calor debido a las personas que se encuentran en el interior. En el caso de edificios a los que acude un gran número de personas, como por ejemplo institutos o centros comerciales este dato puede ser importante. Cada persona es un foco de calor a 37º de temperatura interna.
A la vista de estos datos podemos hacer un resumen que nos sirva de índice para averiguar cuáles son los métodos de que disponemos para conseguir un clima confortable dentro del edificio cualesquiera que sean las condiciones climáticas externas. Se expone a continuación. Este resumen se expresa en la lámina 5. En climas fríos podemos evitar pérdidas de calor:
- Aislando bien los cerramientos
- Evitando la ventilación no deseada
- Calentando previamente el aire que usemos para ventilación
- Con un diseño adecuado, ofreciendo menos superficie de contacto con el exterior, en especial las superficies expuestas a vientos fríos
En climas cálidos podemos refrigerar los edificios:
- Por medio de sistemas de ventilación natural, proporcionando una buena ventilación y humidificación del aire. Aquí veremos los principios básicos que expondremos más ampliamente en la u. d. 5.
- Diseñando adecuadamente los elementos constructivos para lograr espacios más frescos
- Obstaculizar la entrada de la radiación solar en el edificio evitando su calentamiento.
Podemos captar energía del entorno por estos sistemas:
- Captación solar pasiva: Son sistemas que funcionan sin precisar un aporte energético externo. Los veremos en este tema.
- Captación solar activa: Precisan para su funcionamiento de un aporte energético extra. Se verá en el tema 4.
- Captación de energías renovables del entorno. Al final del tema 4 se trata del empleo de este tipo de energías en viviendas bioclimáticas.
A continuación analizamos cada uno de los apartados de este guión que hemos presentado.

Modos de evitar las pérdidas de calor:
Evitar pérdidas de calor a través de los cerramientos:
Se han realizado termografías para observar por dónde se pierde más calor en los edificios y se ha visto que las mayores pérdidas a través de los cerramientos se producen en ventanas, cubiertas y los llamados puentes térmicos. La primera definición oficial de puente térmico la dio la NBE-CT. en 1.979 sobre condiciones térmicas en los edificios en su anexo 2, apartado 2.6.1. Considero que tal definición será excesiva para los alumnos de bachillerato, por lo que daremos una explicación en lenguaje más coloquial.
Estos puentes térmicos son zonas en las que un material buen conductor del calor deja escapar calorías. Son puentes térmicos los elementos estructurales (pilares, vigas, forjados...) en contacto con el exterior, las carpinterías metálicas y cualquier otro elemento buen conductor del calor (marquesinas, vierteaguas, etc.) que conecte el interior cálido con el exterior frío. (Detalles de puentes térmicos en lámina 6 de este tema).
A la vista de esto se comprende que las estrategias para evitar pérdidas de calor a través de los cerramientos son:
(Ver resumen gráfico en lámina 5)
- Aislar adecuadamente los muros, solera y cubierta (Ver apartado de aislamiento en tema 2, página 69 y siguientes)
- Evitar los puentes térmicos dando continuidad al aislamiento de los cerramientos por el exterior de los elementos estructurales. También se deben utilizar carpinterías con rotura de puente térmico que separan la parte exterior e interior de la misma mediante barras o piezas de material aislante. (Ver lámina 6)- Reducir la superficie de cerramientos en contacto con el exterior y la de ventanas en los paramentos que no reciban radiación solar.
- Emplear lunas que garanticen un buen aislamiento térmico. Generalmente son lunas que también aíslan acústicamente.
- Utilizar doble acristalamiento. El pequeño espacio entre las lunas está relleno de aire seco o un gas inerte (argón).
- Empleo de doble ventana. Tanto desde el punto de vista térmico como acústico da mejor resultado la doble ventana que el doble acristalamiento. Solamente será necesario que tenga rotura de puente térmico la carpintería exterior.

Evitar pérdidas de calor por ventilación no deseada:
La mayoría de los materiales de construcción son permeables y permiten el paso del aire en mayor o menor grado. También suele salir aire cálido del interior y entrar aire frío del exterior a través de las rendijas de las puertas y ventanas por falta de estanqueidad. Es necesario que exista una renovación del aire para disponer siempre de suficiente oxígeno para respirar, pero se ha de evitar que esto suponga una pérdida de calorías.
En el tema 5 trataremos ampliamente el tema de la ventilación. Aquí solamente damos indicaciones de cómo evitar ventilaciones no deseadas:
- A través de la cubierta, muros, etc.: este problema se presenta en edificios antiguos que no han sido debidamente restaurados. Debe hacerse una limpieza y restauración de las juntas y rehabilitar las cubiertas. El aire caliente tiene menor densidad y asciende. Si hay fugas en la cubierta escapará el aire caliente por ella y su lugar en las habitaciones será ocupado por aire frío ocasionándose una situación de disconfort.
- A través de la carpintería: un modo sencillo para evitar filtraciones de aire por puertas y ventanas es instalar carpinterías que garanticen un buen grado de hermeticidad. Esto no solamente protege de las filtraciones de aire sino también del agua de lluvia.
- Evitar puentes térmicos y fugas alrededor de la carpintería: La colocación de la carpintería debe ser cuidadosa para evitar que queden grietas y/o puentes térmicos, poniéndose aislamiento en jambas, vierteaguas y dintel.
- El punto por donde mayores pérdidas de calor suelen producirse son las cajas de las persianas, por ellas se pierde aire caliente que ha ascendido (Ver lámina 6 )
- Taponar rendijas: en construcciones ya hechas no quedará más remedio que poner burletes para taponar las rendijas, pero existen pocos burletes en el mercado que garanticen durabilidad, la mayoría se estropean al cabo de uno o dos años y es necesario reponerlos. Si se dispone de ventanas de una sola carpintería, puede ser el momento adecuado para poner una doble ventana añadida, preferiblemente colocada hacia el exterior para garantizar una mejor hermeticidad.
- Puerta de entrada: Para evitar la excesiva ventilación a través de la puerta de entrada a la vivienda, se debe hacer una entrada doble de modo que las dos puertas no se encuentren una frente a otra.
- Hacer la entrada al edificio a través de un vestíbulo, invernadero o un porche cubierto que generen un pequeño microclima a una temperatura intermedia entre el exterior y el interior.
En los edificios públicos también debe hacerse este vestíbulo de entrada. Habitualmente este tipo de edificios están dotados de puertas automáticas de cristal que solamente se abren para dejar paso a las personas, cerrándose automáticamente. Este sistema no evita que al abrirse la puerta entre una ráfaga de aire frío procedente del exterior. En algunos casos se recurre a la colocación de dos puertas sucesivas para evitar corrientes de aire, duplicando el consumo energético. Una buena alternativa son las antiguas puertas giratorias, eliminan las corrientes de aire, limitan el intercambio de aire con el exterior al mínimo imprescindible y no consumen energía eléctrica. ( Ver lámina7)Calentar el aire empleado para ventilación:
Es necesario que exista ventilación para disponer continuamente de aire fresco procedente del exterior porque somos seres que respiramos oxígeno. La ventilación es necesaria no solamente para aportar oxígeno.
Se precisa la ventilación para disipar el exceso de humedad y los olores. Al respirar exhalamos vapor de agua que va saturando el aire. A esto hay que añadir el vapor desprendido en cocinas y cuartos de baño. Vemos que es saludable disponer de una renovación del aire, se trata de conseguirlo sin que suponga una fuga ruinosa de calorías.
En climatización tradicional se calcula que el aire de un edificio se renueva completamente cada hora. Estimaciones expuestas por el Centro de Espacio Subterráneo de la Universidad de Minnesota consideran que pueden bastar con dos renovaciones completas por día si no se encienden llamas. Por debajo de esta cifra no se eliminan los olores persistentes.
Es muy importante que en el caso de existir en la vivienda cocinas o estufas con llama (de gas, leña u otro combustible), se les suministre suficiente aire fresco para abastecer las necesidades de la combustión. En el caso de las estufas de leña o carbón puede suministrarse el aire por medio de una alimentación propia.
El aire fresco puede llegar a la estufa a través de una conducción que la enlace con un orificio practicado en el exterior. Esta conexión directa de aire fresco evita pérdidas de calor y corrientes indeseadas o molestas para las personas que puedan permanecer sentadas al lado de la estufa. Para aprovechar mejor las calorías que se perderían con la expulsión de los gases de combustión debería disponer de un intercambiador de calor. (U. Didáctica nº 4)
En cuanto al calentamiento del aire necesario para ventilación los procedimientos son éstos:
- Aprovechar el calor de un elemento calefactor (almacén de calor, chimenea, etc.) para calentar el aire. En el caso de disponer de suelos o muros radiantes resulta muy sencillo hacer pasar el aire de ventilación por dichas superficies para calentarlo. La ventaja de ventilar con aire caliente se compensa con el inconveniente de que nos supone un coste energético. El siguiente procedimiento no supone gasto energético alguno.
- Aprovechar el calor del subsuelo: calentando el aire de ventilación haciéndolo pasar por tubos enterrados en el terreno, colocando los tubos de modo que el aire caliente, menos denso, pueda subir. Los tubos deben ser de plástico para que la humedad del terreno no haga descender la temperatura del aire. En terreno llano hay que colocar un pequeño ventilador para favorecer la circulación del aire. Evitar la entrada de insectos con malla metálica fina (Ver lámina 8).Diseñar adecuadamente las superficies en contacto con el exterior, en especial las expuestas al viento:
Las pérdidas de calor a través de superficies en contacto con el exterior se reducen si se suprimen los metros cuadrados de superficie en contacto. Seguramente resulta más fácil de comprender esto viendo un dibujo (Lámina 9) que con la explicación que expongo a continuación:- Enterrar o semienterrar el edificio: Este sistema aprovecha la gran masa térmica del terreno para reducir los intercambios de calorías con el exterior. La inercia térmica de la tierra es tan grande que durante el invierno va radiando el calor absorbido en el verano, calentando la casa. Cuando ya se ha enfriado el terreno al comienzo del verano, va refrescando la casa captando su calor que acumulará mientras dure el buen tiempo. Una casa semienterrada, en invierno, está aprovechando el calor que radia el terreno en las superficies en contacto con él. Veremos casas enterradas en el tema de diseño del paisaje para control climático.
- Suprimir en lo posible la fachada orientada hacia los vientos fríos, especialmente los del norte. Puede hacerse inclinando la cubierta hacia ese lado para que los vientos se desplacen por encima de ésta.
- Curvar los paramentos expuestos al exterior, especialmente los orientados al norte para reducir la superficie de contacto y reducir el rozamiento. La mínima superficie en contacto con el aire exterior a igualdad de volumen interior la proporciona una semiesfera.

Modos de refrigerar los edificios:
Proporcionar buena ventilación y humidificación del aire:
El tema de la ventilación se trata más extensamente en la unidad didáctica 5. En esta veremos los fundamentos básicos de la misma que se expresan en la lámina 10.
La refrigeración por medio de la ventilación se basa en poner en práctica estas estrategias que se resumen en la lámina 11:- Dejar salir el aire caliente: para ello se practican aberturas en los puntos en los que el aire caliente tiende a acumularse para evacuarlo. Como el aire caliente es menos denso y tiende a ascender se acumula en las zonas altas, por lo que se practican aberturas en cubiertas y techos.
- Introducir aire fresco: El aire puede enfriarse haciéndolo pasar por el subsuelo o captarse del interior de cuevas naturales, como hacen desde hace siglos cerca de Vicenza, Italia. En zonas áridas y sobre las ciudades circulan corrientes de aire más fresco a determinada altura y es necesario captarlo mediante torres captadoras. Esto lo veremos en la unidad didáctica 5 correspondiente a ventilación.
- Enfriar el aire destinado a ventilación: si no se puede captar aire fresco al menos puede enfriarse recurriendo a la construcción de microclimas como patios interiores y con la ayuda de la vegetación. En zonas de clima seco puede aumentarse el enfriamiento por medio de la evaporación del agua, colocando fuentes o superficies húmedas expuestas a las corrientes de aire. En zonas tropicales muy húmedas este sistema es menos eficaz.
- Generar corrientes de aire: se facilita la entrada de aire fresco y la salida de aire caliente generando corrientes que circulen refrescando el interior del edificio. También son muy útiles los sistemas de doble cubierta en medio de la cual circula el aire enfriándola.
Diseñar el edificio creando microclimas frescos:
Ver resumen gráfico en lámina nº 12. Se expone a continuación:- Diseñar plantas diáfanas para favorecer las corrientes de aire.
- Estancias con techos altos para que el aire caliente ascendente no afecte a las personas y para favorecer la circulación de aire.
- Disponer en sótanos y semisótanos estancias habitables para la época calurosa. Las viviendas islámicas tradicionales disponen de una o más estancias de este tipo.
- Diseñar una distribución flexible, de modo que dependiendo de la época del año puedan habilitarse como zonas de estar o dormitorios diferentes espacios de la vivienda para adaptarse a las condiciones climatológicas cambiantes.
- Proyectar umbráculos, espacios sombreados entre el exterior y el interior del edificio, como porches, pérgolas, etc. para crear espacios intermedios que incluso pueden ser habitables en determinados momentos del día.
- Proyectar uno o más patios interiores con vegetación y fuentes para crear microclimas frescos y a la sombra. La mayor parte de las habitaciones pueden agruparse alrededor de los patios y disfrutar de las corrientes de aire fresco que generan.
- Diseñar una cubierta de hierba asociada a un sistema de riego por pulverización lo que producirá una refrigeración por evaporación en la zona que más se calienta en verano: la cubierta.
- Hacer un diseño urbano con calles estrechas: los cascos antiguos de las ciudades son un ejemplo de cómo crear microclimas con sombra y temperaturas estables. Además, los cruces de calles facilitan la ventilación sin que las brisas alcancen velocidad excesiva.
Obstaculizar la entrada de la radiación solar:
La reducción de la incidencia de la radiación solar sobre el edificio cuenta con un gran aliado en el empleo de la vegetación, tema que trataremos ampliamente en la unidad didáctica nº 6. Aquí haremos una enumeración de los elementos que regulan la captación solar según necesidades o según la época del año. Están representados en las láminas 13 y 14. Son estos:- Diseñar voladizos o pantallas que proyecten sombra. En climas templados como el nuestro los voladizos deben dar sombra en verano y permitir la entrada de la luz solar en invierno, para ello se dimensionan según el recorrido solar anual. (láminas 2 y 3 tema 1).
- Dotar a los elementos de carpintería de lamas direccionales, toldos y postigos que regulen la entrada de la luz solar
- Colocar en las ventanas vidrios aislantes, reflectantes y/o tintados que reduzcan la captación de la radiación solar
- Plantar frente a la fachada sur del edificio plantas de hoja caduca, trepadoras para pérgolas o árboles que darán sombra en verano y dejarán pasar la luz en invierno.
- Tamizar la entrada de luz solar directa por medio de celosías. Es un método usado habitualmente en países del Mediterráneo y Oriente.
- Diseñar el perfil de las jambas de puertas y ventanas a 90º en relación al plano de fachada de modo que permitan la entrada de menor radiación solar.
- Favorecer la luz solar indirecta o reflejada. Este sistema mantiene el interior del edificio mucho más fresco. Puede conseguirse por medio de pantallas translúcidas que dejen pasar luz atenuada o diseñando superficies con el ángulo adecuado para que llegue al interior luz reflejada y no luz directa. Modos de captar energía del entorno:
A nuestro alrededor disponemos de enormes cantidades de energía que habitualmente despreciamos. La fuente de energía fundamental de que disponemos en el planeta Tierra es la energía que nos llega de nuestra estrella: el Sol. Esta energía se genera por las reacciones termonucleares que ocurren en su centro, sobre todo por la fusión de grupos de dos átomos de hidrógeno que se unen para formar uno de helio. Se estima que el Sol pierde 5 millones de toneladas de materia por segundo en esta fabulosa reacción. Esta potente energía se expulsa al espacio en forma de ondas electromagnéticas.
La radiación solar que llega a la Tierra en parte se refleja de nuevo al espacio. El porcentaje absorbido por la atmósfera origina, entre otros, los fenómenos de evaporación y condensación del agua causando los fenómenos climáticos: lluvia, vientos y demás fenómenos meteorológicos. También es utilizada por las plantas para realizar la fotosíntesis dando origen a la cadena de alimentación de todos los seres vivos. Otra parte la absorbe el terreno. La energía eólica, hidráulica, biomasa, de las mareas y las olas, etc. son transformaciones de la energía solar.
La energía sobrante vuelve a ser devuelta al espacio manteniendo un equilibrio energético en el planeta. Por esto es tan peligroso el efecto invernadero causado por la quema de combustibles. La capa de CO2 que se forma en la atmósfera impide que la energía sobrante se disipe en el espacio exterior ocasionando el recalentamiento del planeta.
El petróleo que quemamos ahora y que tuvo su origen en los seres vivos de hace millones de años, fue una energía que vino del Sol, se elaboró lentamente en el interior de la tierra y ahora estamos malgastando. Por ello es fundamental que utilicemos la radiación solar directa y las energías renovables.
Los sistemas de captación de energía del entorno para su aprovechamiento en arquitectura bioclimática están resumidos en la lámina 15 de este tema y los hemos repartido para su estudio en tres apartados: captación solar pasiva (la veremos a continuación), captación solar activa y mecanismos para obtener energías renovables del entorno (U. Didáctica 4).Captación solar pasiva:
Se denomina así al método de captación de la radiación solar que funciona sin necesitar aporte energético externo. También se denomina pasivo al sistema que ocasionalmente pueda utilizar un pequeño equipo para acelerar los intercambios térmicos aunque no sea imprescindible para su funcionamiento, como por ejemplo, un ventilador.
Los sistemas captadores pasivos precisan combinarse con mecanismos de ocultación para proteger al edificio de la entrada indiscriminada de radiación solar en los días calurosos de verano. En este mismo tema vimos ya el apartado de cómo obstaculizar la entrada de la radiación solar. (Láminas 13 y 14).
Otra posibilidad es acumular dicha radiación solar para ser utilizada en la noche o incluso emplear sistemas que acumulen el calor para el invierno.
Vemos que la captación solar pasiva abarca dos tipos de elementos:
- Elementos captadores: recogen la radiación solar. Para su estudio los clasificaremos en sistemas captadores directos, indirectos y añadidos. Se analizan en la página siguiente.
- Elementos acumuladores: son sistemas que tienen la propiedad de almacenar en su interior la energía calorífica de modo que puede ser utilizada con posterioridad. Unos sistemas permiten acumular el calor del día para cederlo durante la noche. Otros son capaces de almacenar el calor durante muchos días, incluso meses. Para su estudio podemos clasificarlos en sistemas puramente constructivos y depósitos de acumulación.
Un sistema completo de aprovechamiento de la energía calorífica del sol no se limita a la instalación de elementos captadores o de elementos acumuladores. Lo ideal es emplear ambos sistemas conjuntamente. Se debe hacer un estudio de las necesidades caloríficas del edificio, en función del cual se diseñarán los elementos captadores y acumuladores necesarios. También se verá la necesidad de incluir sistemas de captación activa u otros.
Elementos captadores directos:
Se denominan sistemas de captación directa a aquellos en los que la radiación solar entra directamente en el espacio que se desea caldear. Esto se consigue haciendo que los rayos solares atraviesen un vidrio y calienten el aire, los suelos y los paramentos interiores. (Ver lámina 16)Una simple ventana orientada hacia el Sol es el primer sistema de captación solar pasiva. Todos sentimos más confort un día de invierno en el que los rayos del sol entran por la ventana que un día nublado, aunque el termómetro marque la misma temperatura. Nuestra piel capta la radiación solar y eso nos hace sentir más confortables.
La captación solar se puede hacer a través de un invernadero, galería o terraza cubierta con vidrio. Es un espacio acristalado creado con la finalidad de captar el máximo de radiación solar. Las habitaciones a caldear se prolongan, sobresalen de la fachada, disponen de un espacio donde se pueden cultivar plantas, usarse como zona de estar, de recreo, o simplemente tomar el sol.
Durante el día, el aire que se calienta en el invernadero se distribuye por toda la casa gracias a las corrientes de convección. Después veremos mejoras a este sistema. Por la noche deben evitarse las pérdidas de calor colocando persianas o contraventanas. También puede ser útil el empleo de vidrios aislantes, pero debe consultarse al fabricante en qué grado permiten la absorción de la radiación solar. No sólo querremos conservar el calor de dentro, también necesitaremos captar el calor del sol.
Si se cultivan plantas en el invernadero, la propia vegetación hace de acondicionador térmico suavizando las temperaturas para que no haya tanta diferencia entre el día y la noche y regulando la humedad ambiental.
En verano se debe impedir la entrada de la radiación solar con los elementos de cierre que ya hemos visto y facilitar una buena ventilación para evitar la captación de energía solar y favorecer la refrigeración. Un invernadero siempre debe tener respiraderos o aberturas en la parte superior para dejar salir el calor en verano.
Elementos captadores indirectos:
Son modos de captar la radiación solar por medio de elementos constructivos que actúan de intermediarios. Captan y almacenan la energía solar que cederán posteriormente a las habitaciones. (Ver láminas 17 y 18).Hemos visto que los sistemas captadores directos consisten en exponer a la radiación solar el espacio constructivo que se desea caldear. Para lograrlo se interpone el vidrio de una ventana o galería acristalada entre la radiación solar y el espacio a calentar. Veamos el por qué:
Una vez que los materiales de construcción han absorbido la energía solar, van cediendo lentamente la energía sobrante en forma de radiación infrarroja. La radiación infrarroja no es capaz de atravesar el vidrio, acumulándose dentro del espacio constructivo. Es el llamado efecto invernadero.Los suelos, muros y cubierta pueden ser muy útiles para captar y almacenar la energía procedente del Sol, sobre todo si son porosos ya que tienen más superficie de intercambio. En invierno los materiales de construcción acumulan energía solar durante el día que van cediendo lentamente durante la noche. El agua es también un excelente material para captar y almacenar calor.
Si se dispone de suficiente superficie acristalada y masa térmica, es decir, muros y suelo gruesos y de materiales densos como ladrillo, piedra u hormigón, éstos pueden acumular energía para ir cediendo durante varios días nublados consecutivos. De este modo se mantendrá una buena temperatura en el interior. Puede ser necesaria la ayuda de alguna estufa o radiador en invierno, pero las necesidades de calefacción van a ser mucho menores.
Puede construirse un grueso y masivo muro de fachada orientado al sur y poner sobre él un vidrio para que capte y acumule la radiación solar. Para facilitar los intercambios de calor con el resto de la vivienda se pueden hacer unos orificios en la parte superior e inferior del muro para facilitar las corrientes de convección. Este sistema fue popularizado por el ingeniero francés Félix Trombe y se denomina muro o pared Trombe.
Además del citado existen otros sistemas de captación indirecta de la radiación solar, haremos un resumen de ellos:
- Muro Trombe: Muro de gran masa térmica construido de piedra, hormigón, bloques de tierra, adobes o ladrillo sin pulir orientado al sur y precedido de un vidrio o elemento translúcido para favorecer el efecto invernadero. Lleva aberturas en su parte superior e inferior para favorecer los intercambios térmicos entre la cámara de aire que calienta el sol y el interior del edificio. Es necesario aislar el vidrio en las noches de invierno para no perder calorías y sombrear en verano para evitar la acumulación de calor. (Ver lámina 17 de este tema).
- Cubierta de inercia térmica: es una cubierta realizada con materiales de construcción de elevado peso específico. Su gran masa amortigua las oscilaciones térmicas.
- Inercia térmica interior: consiste en situar en las paredes y suelos del interior del edificio grandes masas térmicas que capten y acumulen la radiación solar. Deben situarse en lugares donde puedan captar la energía, cerca de ventanales, invernaderos, etc. Deben repartirse lo más posible por todo el edificio, no concentrar las masas térmicas solamente en una zona para amortiguar mejor los ciclos noche-día. El aislamiento del edificio debe ir por el exterior, para proteger el calor acumulado en muros y suelos. (Ver lámina 18).
- Solera de grava: consiste en disponer una solera de grava muy bien aislada que actuará de depósito acumulador. Hay que asegurarse de que la humedad del terreno no llegará a la grava. La captación se realiza a través de un vidrio como en la pared Trombe. La energía almacenada se conduce al interior del edificio, bien por radiación o bien haciendo circular aire por el interior de la solera.
- Inercia subterránea: Este sistema aprovecha la gran masa térmica del terreno para amortiguar las oscilaciones climáticas del exterior. Da muy buenos resultados en climas extremados y de montaña.
Elementos captadores añadidos:
La captación y acumulación de la energía solar se realiza por medio de elementos que no pertenecen al edificio propiamente dicho. (Ver lámina 19).- Muro de agua: Muro similar al Trombe, formado por depósitos de agua entre los que se dejan huecos para favorecer las corrientes de convección y facilitar los intercambios de calor con el interior del edificio. Suelen colocarse 200 litros de agua por metro cuadrado de superficie de captación.
- Cubierta de agua: Sobre una azotea pintada de color muy oscuro o negro se colocan bidones o sacos de plástico que se llenan de agua. Su eficacia aumenta si se cubren con vidrio o un material translúcido. En nuestras latitudes, por la inclinación de los rayos solares en invierno, deben ir sobre una superficie inclinada y cubrirse durante la noche invernal. En verano puede utilizarse este sistema para refrigerar, dejando destapados los depósitos de agua para que se enfríen durante la noche. Dan mejor resultado en refrigeración en clima continental con noches de verano frescas y días calurosos.
- Sistema de captación independiente: consta de un elemento captador adosado al edificio que aprovecha el efecto invernadero y mediante corrientes de convección de aire o agua transmite el calor a un depósito acumulador desde donde se transferirá al edificio. Estos elementos captadores pueden construirse in situ con materiales de construcción, por ejemplo ladrillos o cantos rodados y un recubrimiento de vidrio.
También pueden instalarse colectores prefabricados para la captación pasiva de la radiación solar, pero en esta unidad didáctica nos estamos centrando exclusivamente en el control climático por medios constructivos. El apartado correspondiente a paneles solares se verá en la unidad didáctica nº 4.
Elementos acumuladores:
Son dispositivos que almacenan calor para ser cedido al edificio cuando desciende la temperatura exterior. Alguno de estos sistemas ya los hemos citado. No es necesario emplear un único sistema de acumulación. La experiencia indica que da mejores resultados la combinación de varios tipos de masas térmicas, ya que cada estación o circunstancia climática se adapta mejor a uno u otro sistema. Se representan en la lámina 20. En resumen son estos:
- Elementos acumuladores puramente constructivos: son elementos constructivos que realizan una doble función constructiva y de almacén de calor. Son los sistemas constructivos de inercia térmica ya citados: muros, soleras, etc.
- Depósitos de acumulación: su misión es exclusivamente la de almacenamiento del calor. Son depósitos de cualquier material utilizable como almacén de calor: grava, ladrillos, recipientes llenos de agua, sales eutécticas en disolución, etc. En las regiones frías el depósito acumulador del calor es un elemento fundamental de cualquier sistema de bioclimatización. Estudios realizados a mediados del siglo XX por la profesora María Telkes del Institute of Technology de Massachussets en Boston y la arquitecta Eleanor Raymond, sobre acumuladores de calor latente, analizaron el comportamiento de diversas sales eutécticas en disolución que podían almacenar o ceder calor al fundirse o solidificarse según la temperatura. Tuvieron éxito almacenando calor en sal de Glauber disuelta en agua, sulfadecahidrato, (Na2 SO4 . 10 H20) y con la adición de pequeñas cantidades de anticorrosivos y acelerantes de la cristalización. Esta sal funde a 32º C. Calentada a 50º C. acumula seis veces más calor que el mismo volumen de agua y once veces más calor que el mismo volumen de piedras. Desde 1.963 se investigaron los acumuladores de calor latente en el Laing-Energie-Institut en Remseck, Alemania. También el Dr. Johannes Schröder de la Philips trabajó con mezclas eutécticas de fluoruros de litio. Pueden ser cargados y descargados más de 12.000 veces sin perder su capacidad acumulativa.
- La acumulación del calor también adquiere gran importancia en los sistemas de captación solar activa, en la obtención de agua caliente sanitaria (para duchas, lavado de ropa, etc.) y en los sistemas de calefacción por colectores solares ( unidad didáctica 4 ). Los acumuladores de calor latente pueden absorber de los colectores de captación solar la energía procedente del sol y almacenarla aunque su aporte sea intermitente. Así pueden ir cediendo lentamente el calor acumulado al interior del edificio.
- Lagunas de termo-acumulación: Los investigadores Dr. Günter Scholl, Wolfschlugen, Lorcano y Stuttgart plantearon en 1.971 la posibilidad de utilizar el calor acumulado en lagos y lagunas. Permitirían utilizar el calor que pierden las grandes centrales eléctricas. En 1.975 publicaron los datos técnicos, costes y rentabilidad de tales instalaciones. Una laguna de superficie 300 x 500 metros cuadrados puede abastecer de calefacción a una población de 3.000 habitantes. Es necesario cubrirla con bolas flotantes de material aislante para que no pierdan calor.
- Lagunas solares: son muy utilizadas en Japón para calentar el agua de los arrozales, lo que produce un aumento de la cosecha de arroz del 8 al 20 %, pero nada impide utilizar este sistema en edificación y se han hecho estudios sobre ello. Estas lagunas tienen una superficie de 3.000 metros cuadrados y 2 metros de profundidad. Sobre ellas esparcen copos de hollín o poliestireno para evitar pérdidas de calor y alcanzan temperaturas de unos 35º C.
- Acumuladores de calor subterráneos: fueron propuestos por el Dr. Bertrand Weissenbach de la Messerschmitt-Bölkow-Blohm. El calor se acumula en depósitos de grava subterráneos. Puede utilizarse agua como material de transferencia de calor, aunque el uso del agua como elemento acumulador puede plantear problemas de proliferación de bacterias. Los acumuladores subterráneos de piedras han sido muy utilizados en viviendas unifamiliares.

Aplicación a la construcción bioclimática en Galicia:
En la primera unidad didáctica hemos hablado de las regiones climáticas en Galicia. Podemos decir que Galicia disfruta de un clima templado y húmedo en la mayor parte de su territorio.
En climatización hablar de un clima templado significa tener que calentar en invierno y refrescar en verano. La humedad excesiva hay que tratarla y proteger los edificios de los fuertes temporales de las zonas costeras.
Una construcción tradicional muy bien adaptada a este clima eran los castros celtas construidos con pallozas o citanias de planta circular y situadas muy próximas, de modo que ofrecían menor superficie a los vientos y se protegían unas viviendas a otras frente a los cambios de temperatura.
El tipo de construcción rural posterior de viviendas aisladas con gruesos muros de piedra tenía buenos aciertos y otros elementos mejorables.
Habitualmente faltaba un elemento vital, sobre todo en construcciones a media ladera: una solera de grava que permitiese circular al agua del terreno por debajo del edificio sin llegar a encharcar la vivienda. En ocasiones se suplía este defecto dejando canalillos por donde circulaba el agua (los dormitorios se situaban en la planta alta). En estos casos debe hacerse un drenaje ladera arriba. Si no se tiene garantizada la impermeabilización puede ser muy conveniente hacer un forjado sanitario, es decir, elevar el suelo de la vivienda medio metro sobre el terreno para permitir que se evapore la humedad.
Un buen acierto eran los adosados: pajar, leñera y demás espacios pegados al edificio principal y que hacían las veces de espacios de amortiguación climática, protegían de los fríos vientos y creaban microclimas cálidos alrededor de la casa. El porche abierto de la planta superior cumplía también esta misión y se logró un éxito climático cuando se transformó en galería acristalada, una perfecta cámara de regulación térmica que convirtió el muro de fachada orientado al sur en acumulador térmico.
Haremos ahora un resumen esquemático de los elementos que puede adoptar una vivienda en Galicia que a la vez respete los criterios bioclimáticos y los logros de su arquitectura tradicional. Este esquema lo separaremos en apartados atendiendo a la protección frente al viento, al calentamiento en invierno, refrigeración en verano y protección frente a la humedad:
Protección frente a la humedad:
En la Unidad Didáctica nº 2, en el apartado correspondiente a aplicación a la construcción bioclimática en Galicia se hizo un resumen de las medidas que pueden tomarse relativas a diseño y a adecuación de los diversos elementos constructivos para evitar humedades en la edificación. Allí mencionamos que los materiales de construcción empapados de humedad se convertían en puentes térmicos a través de los cuales se pierden las calorías almacenadas en el interior. Por ello, si se pretende disfrutar de una vivienda confortable es muy importante evitar este problema. Nos remitimos pues a dicho apartado que comienza en la página 79. En la página 80 se menciona cómo subsanar humedades en edificios antiguos. En la página 81 figura el resumen de medidas a tomar para vivir en edificios sin humedades.
Protección frente al viento:
La lámina nº 21 ofrece un resumen de estos apartados:- Colocar una barrera vegetal de protección frente al viento según veremos en la unidad didáctica 6, donde se explica cómo hacerla, se dan datos sobre especies arbóreas y arbustivas, dimensiones, etc.
- Hacer un pequeño terraplenado que defienda la edificación de los vientos y no deje paramentos expuestos al mismo. El pequeño espacio que quede entre el edificio y la pared puede convertirse en un agradable y sombreado patio trasero en verano y puede utilizarse como taller al aire libre en los días templados.
- Diseñar la cubierta de modo que los vientos resbalen por encima de ella y abra una gran fachada al sur.
- Ofrecer al viento la mínima superficie y curvarla para hacerla “aerodinámica” y los vientos resbalen.
Calentamiento en invierno:
Las láminas nº 22 y 23 ofrecen un resumen de estos apartados:- Aislar adecuadamente el edificio para evitar fugas de calor y evitar los puentes térmicos.
- Abrir una gran fachada acristalada al sur para captar la radiación solar. Añadir en la fachada sur espacios captadores adosados, como invernadero, galería o porche acristalado.
- Dotar a las ventanas de contraventanas de madera para aislarlas por la noche y evitar pérdidas de calor.
- Disponer detrás de las superficies acristaladas orientadas al sur elementos acumuladores de calor: muros Trombe, gruesos muros o soleras de gran inercia térmica o depósitos acumuladores con grava o disoluciones de sales eutécticas y diseñando aberturas como puertas o ventanas interiores que garanticen el reparto del calor acumulado al resto de la vivienda.
- Poner un vestíbulo de entrada o entrar a través de una galería o invernadero para evitar corrientes frías de aire al abrir la puerta.
- En zonas frías y de montaña calentar el aire que se use para ventilación como vimos en el apartado correspondiente.
- Emplear sistemas de captación activa de la energía del entorno, como los que veremos en la próxima unidad didáctica.
- Si se desea poner una chimenea, asegurarse de que funciona por efecto Venturi.
- La chimenea, cocina o estufa calefactora, si la hay, debe situarse en una zona central de la vivienda para que el calor suyo y de las paredes de la chimenea irradie al mayor número posible de estancias. Asegurarse de que la madera procede de explotaciones sostenibles.Refrigeración en verano:
La lámina nº 24 ofrece un resumen de estos apartados:
- Disponer aberturas en la parte superior de galerías e invernadero para dejar salir el aire caliente. Favorecer la ventilación de modo que el aire entre desde las zonas frescas (ejemplo, patio trasero situado al norte de la casa) y salga por las cálidas (aberturas superiores de las galerías o invernadero).
- Evitar la entrada de la radiación solar en verano diseñando voladizos y/o disponiendo elementos de protección, como toldos, sobre todo en el invernadero y galerías.
- Dotar de persianas o estores sobre todo a las ventanas orientadas al sur y al oeste. En general evitar la luz directa y favorecer la luz indirecta o reflejada.
- Plantar árboles y trepadoras de hoja caduca en la fachada sur, como veremos en la unidad didáctica nº 6.
- Distribuir plantas y diseñar como zona de estar agradable y sombreada el pequeño patio situado al norte.
- Diseñar una ventilación por tuberías subterráneas para refrescar el aire. Aprovechar el trazado de la zanja de drenaje y colocar la tubería de ventilación sobre la de drenaje, la humedad de la misma le dará un frescor añadido.
Datos, curiosidades y anécdotas:
Un adulto respira al día unos 15 kg. de aire. Teniendo en cuenta que solamente comemos 1,5 kg. de comida y bebemos 2 l. de agua al día, esto nos indica la importancia que tiene respirar un aire sano. No podríamos vivir en edificios herméticamente cerrados porque en muy pocas horas tendríamos síntomas de malestar.
Es de todos conocido el frío que hace en invierno en Suecia y Noruega. Para evitar pérdidas de calor han construido muchos de sus edificios públicos subterráneos: edificios administrativos, centros de salud y hasta un polideportivo con capacidad para 8.000 espectadores. Tienen la ventaja añadida de que podrían servir como refugio nuclear.
El invernadero es un adosado que consideramos bastante actual, sin embargo ya existía en el Siglo XVlll. El famoso muro popularizado por Trombe, tan empleado en climatización, fue construido por Morse en 1.881.
Cerca de la ciudad italiana de Vicenza se encuentran las Villas Costozza que fueron construidas hace siglos encima de cuevas naturales. Disfrutan de un excelente sistema de refrigeración natural ya que introducen el aire fresco de las cuevas a través de celosías de mármol situadas en el suelo. El famoso arquitecto del siglo XVl, Palladio, se inspiró en este sistema para refrescar la Villa Rotonda que se ventila través del aire que circula por el sótano. El sistema lo completan unas aberturas situadas en la cúpula que dejan escapar el aire caliente que se acumula en ella.
La arquitectura tradicional japonesa disponía en las ventanas dos tipos de cerramiento. El exterior consistía en una gruesa plancha de madera decorada que se cerraba durante la noche para mantener el calor del interior. De día se abría hacia arriba quedando sujeta en la cornisa del tejado. El cerramiento interior consistía en una persiana translúcida de papel de arroz enmarcada en madera, que permitía el paso de luz y protegía de las vistas. Si se deseaba abrir dicha persiana se abría hacia el interior quedando sujeta de ganchos en el techo.
Otro sistema empleado por la arquitectura tradicional japonesa consistía en diseñar voladizos que bloqueaban la luz solar directa. Del borde de ellos colgaban persianas translúcidas que dejaban pasar luz indirecta, de modo que al interior de la vivienda llegaba solamente luz indirecta o reflejada. Esto permitía abrir los muros exteriores corredizos favoreciendo la ventilación.
Sabemos que la Tierra orbita alrededor del Sol y es continuamente bañada por las ondas de energía procedentes del Sol. Nuestros ojos pueden ver el 44% de esta energía, pero la mayoría no podemos verla porque el 56 % de las ondas no están en el espectro visible. De ellas el 53 % son infrarrojos, longitudes de onda larga. La atmósfera nos protege de las radiaciones de onda corta, las ultravioleta que son más peligrosas (el 3 %).
La energía que llega a nuestra atmósfera procedente del Sol alcanza una potencia de 0,14 W/cm2. A este valor se le conoce como constante solar. El 32% es devuelto al espacio, el 15 % lo absorbe la atmósfera, el 6 % se refleja en el suelo y el 47 % restante es absorbido por la tierra.
No siempre se ha sabido de la existencia del horno solar generador de la inmensa cantidad de energía que conocemos ahora. Hace poco más de dos siglos en 1795, Sir William Herschel, prestigioso científico y descubridor de Urano describía el Sol como un cuerpo sólido y oscuro. Su brillo se debería a nubes luminosas que lo rodeaban y tendría zonas frías habitadas por “seres adaptados a las circunstancias peculiares de ese inmenso globo”.
Los descubrimientos científicos a veces ocasionan malestar cuando chocan con las ideas preconcebidas de la sociedad. Esto sucedió con el descubrimiento de las manchas solares en el Sol, símbolo de perfección. Uno de los descubridores de las manchas solares fue Christoph Scheiner jesuíta y matemático alemán a quien sus superiores prohibieron publicar el hallazgo con su nombre. Galileo, temeroso de la reacción de Iglesia, aplazó el anuncio del descubrimiento, sin embargo estudio del movimiento y evolución de dichas manchas le permitieron descubrir que giraba sobre sí mismo.